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A two-dimensional optimal control problem is considered on the assumption that the terminal time of the process is not fixed 
and the integral objective functional depends on a parameter. Asymmetric constraints are imposed on the control parameter. 
l%vo cases are considered: constraints of the same sign and constraints of different signs. In the case of constraints of different 
signs, if the parameters of the problem satisfy certain relations, one obtains chattering control, alternating with a control with 
two switchings and a first-order singular are when these relations are violated. In the case of sign-definite control the controllability 
domain is part of the plane bounded by two semiparabolas. Three types of control law are then possible, in two of which the 
system will hit the boundary of the controllability domain and move along it, while the third features a first-order singular are. 
As the parameter of the problem is varied, the phase portrait undergoes evolution and one of these three types is interchanged 
with another. The optimality of these control laws is rigorously established using a dynamic programming method. 0 2003 Elsevier 
Science Ltd. All rights reserved. 

Chattering control [l] is characterized by the property of the control parameter to switch values a 
renumerable number of times in a finite time interval, with the switching times accumulating at a certain 
point. The chattering phenomenon was first observed [2] when investigating the problem of suppressing 
noise in electronic devices. The problem was reduced to that of minimizing a functional which had the 
meaning of the integral square deviation and possessed a certain symmetry [2, 31. 

In some cases such symmetry may not other. Over the period that has elapsed since the publication 
of Fuller’s classical problem various modifications have been considered, such as Marshall’s problem 
and the three-dimensional Fuller problem. In Marshall’s problem, in particular, asymmetric constraints 
are imposed on the control parameter. In the case considered here the asymmetry also appears in the 
functional, which has the meaning of the integral square deviation evaluated with a certain weight. The 
essentially new fact in the problem with an asymmetric functional is the appearance of first-order singular 
control. 

1. FORMULATION OF THE PROBLEM 

A control system is given by equations of motion, constraints, and initial and terminal conditions 

i=y, j=u, O<t<T, alu<b 

x(O) = x0, y(0) = y”, x(T) = 0, y(T) = 0 
(1-l) 

where T is the terminal time of the process, which is not fixed; u is a scalar control parameter and a 
and b are its limiting values. 

The following functional is defined for motions of system (1.1) 

T 

J[u] = jx2(t)[Lu(t) + I]dr (1.2) 

0 

where L is a real parameter subject to the following constraints, depending on the signs of a and b 

ab < 0: -l/b I L I -l/a; a>O: L2-lib; bc0: LI-l/a (1.3) 
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If L = 0, functional (1.2) is the mean square deviation. If L f 0, the functional has the meaning of 
a mean square deviation evaluated with a certain weighting function h(u) which is linear in U. 

The admissible controls are functions u(t), integrable in any interval [0,6], which satisfy the constraints 
in (1.1). The problem considered is to minimize functional (1.2) in the class of admissible controls and 
the corresponding motions of system (1,l). Constraints (1.3) imposed on the parameter L guarantee 
that the functional will be positive semidefinite. 

IfL =Oin(1.2)andb=-a = 1 in (l.l), we have Fuller’s problem, which has already been investigated 
[2, 31. The problem with L f 0 and b = -a = 1 has also been investigated [4], and it has been shown 
that in that case the switching curve becomes asymmetric about the origin. It will be shown below, in 
particular, that asymmetry of the constraints imposed on the control implies asymmetry of the switching 
curve, even when L = 0. 

2. THE MAXIMUM PRINCIPLE 

The preliminary analysis of the problem will be based on the Maximum Principle. We shall assume that 
the conjugate variablesp and q are taken with opposite sign, so that the conventional notation system 
of dynamic programming can be retained. Thus, p = -$, q = +I, where $ and w are the conjugate 
variables of the Maximum principle. 

The Hamiltonian and its extremum values have the form 

H(x, y, PI 4) = py + qu + &u + 1) 

minH = min[p,Fb] = py+x*+(q+Lx*)u* 
u (2.1) 

a+b a-b. 
F’ = py+x2+c(q+Lx2), L4* = 2 + Tslgn(q + Lx*) 

where, as always in this paper, c = a, b; the maximization operation has been replaced by minimization 
because of the reversal of the sign of the variablesp and q; U* is an optimal control. 

It is evident from formulae (2.1) that the control is a bang-bang control, and therefore the solution 
of the problem is characterized by a switching curve (SC) which separates domains Na and Nb in which 
the control takes values u = a and u = b, respectively. 

The following equality must hold on the branches of the switching curve 

q+Lx2 = 0 (2.2) 

It is then necessary that the expression q + LX*, as a function of time, should not vanish identically in 
any subinterval (tt, t2) of the interval (0, r). Otherwise, as will be shown below, one obtains a control 
with a first-order singular arc. 

Two equalities are valid identically with respect to time in the singular region: (2.2) and 

py+x* = 0 (2.3) 

Equality (2.3) follows from (2.2) and the fact that the Hamiltonian vanishes on an optimal trajectory: 
H(t) = H(x(t), y(t), u(t)) = 0. 

Differentiating equality (2.2) along solutions of the Hamiltonian system 

,f= 
HP 

= y, j = H, = u, p = -H, = -2x(Lu+ l), cj = -H, = -p (2.4) 

we obtain 

-p+2xyL = 0 (2.5) 

Together with (2.3), this leads to the following equation (of a parabola) for the singular arc 

x = -2Ly2 (2.6) 

Differentiating equality (2.5) along trajectories of system (2.4) and using Eq. (2.6) we obtain an 



Optimal synthesis in a two-dimensional problem with asymmetric constraints on the control 177 

equality defining the singular control: 

US = -- iL (2.7) 

It follows from this equality that the singular arc is the part of the parabola (2.16) on which the relation 
Ly > 0 holds, since the other part of the parabola “recedes” from zero. 

Using Hamiltonian (2.1) and singular control (2.7) one can show that Kelley’s condition [5] is satisfied 
on the singular arc (2.6) 

a a2aH --- = 
&fat2 au -8 L2y2 I 0 

The reverse sign of the equality is due to the reversal of the sign of the conjugate variables. 

3. DYNAMIC PROGRAMMING 

Let I+, y) denote the optimal result function (Bellman’s function) of problem (l.l), (1.2), that is, the 
minimum value of functional (1.2) on trajectories of system (1.1) that begin at the point (x, y). At all 
interior points of the controllability domain, the function V(x, y) will satisfy the equation 

yv,+x2+(vY+Lx2)u* = 0, u* = - 
a+b+a-b. 

2 
2 stgn ( V, + Lx*) (3-l) 

In the domains Na and Nb Bellman’s function satisfies the equations 

F”(x,y,V,,V,)=O, (x,y)e N”, V,+L**>O, u* = a (3.2) 

Fb(x, y, V,, V,,) = 0, (x, y) E Nb, V, + Lx2 < 0, u* = b (3.3) 

where 

F=(x,y, V,, VJ = yV,+cV,+cLx*+x* 

Let V(x, y) denote the restriction of Bellman’s function to the domain NC 

V’(x,y) = V(x,y), (x,y)e N’ (3.4) 

Thus, the function V’(x, y) (Vb(x, y)) satisfies Eq. (3.2) (Eq. (3.3)). 
We need boundary conditions for Eqs (3.1)-(3.3). The terminal conditions in (1.1) yield the following 

value of Bellman’s function at the origin 

V(0, 0) = 0 (3.5) 

This equality will be treated as the boundary condition for Eqs (3.1)-(3.3). Generally speaking, boundary 
conditions should be specified on a curve, rather than at a single point. However, certain properties of 
Bellman’s function enable us to derive a unique solution for which condition (3.5) is automatically 
satisfied. 

The solution of problem (3.1)-(3.5) will be sought in the class of continuously differentiable functions. 
The aforementioned properties of Bellman’s function are invariant in a group-theoretic sense. It is readily 
verified that the equations of motion and constraints (1.1) are invariant under to the transformation 
group 

x = p2x, j = py, i = pt, ii = u, p>o (3.6) 

where p is a scalar parameter. The meaning ;f this invariance is2as follows. If (x(t), y(t), u(t)) is a 
solution of system (1.1) with initial pain; &x , ~0 ), then the triple (u x(t/u), +~(t/p), y(tlp)) is a solution 
of the same system with initial point (u x , uy ). In this situation a factor p will appear in functional 
(1.2) that is 
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vcL*x9 CLY) = p5w Y) (3.7) 

Differentiating equality (3.7) with respect to the parameter p and then putting n = 1, we obtain the 
following equation, which must be satisfied by Bellman’s function 

2xV,+yV,-5V = 0 P-8) 

The general solution of Eq. (3.8) may be represented in the form 

V(x, Y) = Y5wY-*) P-9) 

The branches of the function cp(z) corresponding to the branches V”(X, y) of Bellman’s function 
according to (3.9) will be denoted by cpC 

vc(x, y) = y5q’(xy-*), (x, y) E if (3.10) 

Substituting expressions (3.10) into Eqs (2.2) and (2.3), 
the function cp” (z = xy-*) 

we obtain ordinary differential equations for 

cp’(z)( 1 - 2cz) + 542) + z2( 1 + CL) = 0 (3.11) 

The general solutions of Eqs (3.11) are 

q’(z) = Ac~z-&15’*-(~+L)(z2-;z+-$) (3.12) 

where A, are constants of integration. It is assumed that the points z = 1/(2c) are not in the interval in 
which the solution cp”(z) is defined. They are singular point of Eqs (3.11): The coefficient of the highest- 
order derivative vanishes at these points. If such a point is inside the interval in which the equation is 
defined, the general solution will depend on two parameters. For example, on different sides of the 
point z = 1/(2u) one should use different constants A,, say A, and Ai. When that is done, the two 
branches corresponding to these two constants meet smoothly at z = l/(k), forming a continuously 
differentiable function. This situation will arise below when constraints of different signs are considered. 

Using relations (3.10) and (3.12), we obtain the following expressions for the values V of the function 
V in the domains NC 

W,Y) = V’kY) = A,l~y2-x~5’2-(~+L)(x2y-&y3+~y5), (x,~)E N’ (3.13) 

Generally speaking, for each of the subdomains y > 0 and y < 0 of the domain NC one should here 
use a different constant A,. However, the condition that the function V”(X, y) be continuous at y = 0 
implies that the constant must have a common value. 

Thus, construction of the smooth function V(X, y) reduces to determining the constants V,. 
The cases in which the signs of the parameters a and b are different or the same will be considered 

separately. This is because in the case ab c 0 the controllability domain (the domain from whose points 
admissible controls will steer the system to the origin) is the entire (x, y) plane, while if ab > 0, the 
controllability domain, as will be shown below, is only a part of the (x, y) plane enclosed between two 
semiparabolas. 

4. CONSTRAINTS OF DIFFERENT SIGNS 

Let us consider the case in which the constraints on the control have different signs, i.e. we wish to 
minimize the family of functionals (1.2) for motions of system (1.1) when the parameters satisfy the 
following relations 

a.b<O, -l/b< LS-l/a (4.1) 

Because of the constraints in (1.1) on the control, a singular arc (2.6) will be obtained in this case 
only for the following values of the parameter L 
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Fig. 1 

Y 

x 
Fig. 2 

L E (-l/b, -1/(4b)) u (-1/(4a), -l/u) (4.2) 

A control corresponding to values of the parameter L in the interval (-1/(4b), -l/(k)) will be called 
basic, as distinct from a singular control, which corresponds to values (4.2) of L. 

The following propositions hold for a basic control. 
1. The SC of problem (l.l), (1.2), (4.1) consists of two semiparabolas (Fig. 1): x = e,y*, y z= 0, 

e, E (l/(B), 0) and x = %Y2, Y < 0, g E (0, l/(B)). 
2. Rotating about the origin, an optimal trajectory reaches it in a finite time and in so doing crosses 

the SC a denumerable number of times. The time intervals between different switchings from u = a 
to u = b (or from u = b to u = Q) form a geometric progression. 

3. The optimal control equals a to the right of the SC and b to the left of it. 

Proof. It follows from the invariance of the problem with respect to the group (3.6) that the SC consists 
of a set of parabolas. 

Let L = 0 and let (x(t), y(f)) be an admissible solution of system (1.1) with control u(t) such that 
y(t) > 0, t E (ti, t2). Then the function x(t) is monotonic and the curve (x(t), y( t)) may be represented 
by the equation y = y(x). Consequently, functional (1.2) may be rewritten in the form 

x02) 
J = jx’dt = 1 x’f (4.3) 

‘I -et,) 

The greatery = y(x), the smaller will be the interval on the right of equality (4.3). Let A = (x(tt), y(Q), 
B = (r(t2),y(t2)) be the two end-points. A trajectory with a single switching (from u = b to u = a) exists 
which lies above curves corresponding to any other admissible solutions that pass through the points 
A and B in the upper half-plane (Fig. 2). Thus if (x(&y(t)) is an optimal trajectory, then there are either 
no switchings or there is just one: from b to a at t E (ti, t2). Analogous reasoning shows that when 
y(t) < 0 (t E (ti, t2)) there are either no switchings or just one: from a to b. 

Let L # 0. Let us assume that one of the branches of the SC is situated in the upper half-plane. 
Relations (2.2) and (2.3) must hold at its points. If the system is on that branch of the SC, the control 
u = a or u = b must be switched on and the motion will continue with that control until relation (2.2) 
holds again. Integrating system (2.4) with initial conditions (assuming, without loss of generality, that 
y(0) is equal to 1) 

Y(O) = 1, X(0) = hy2(0), p(0) = -x2(0)/y(O), q(0) = -LX*(o) 

we deduce that the expression q(t) + d(t) is a polynomial of degree 4 in t 

f(t) = 40) + LX201 $ut4 + ft’ + ht* + h*t - 2Lh2 - Lt2 - 2Lht 

Investigation of the polynomialf(t) for different choices of (u, L, h), carried out using the MAPLE 
system, has shown that in the case of negative u the polynomial has no real non-negative roots that do 
not exceed l/u; when u > O,f(t) has no real non-negative roots (in which case the control steers the 
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system to infinity). Thus, there is at most one branch of the SC in the upper half-plane, and u = 
a c 0 to its right. 

Analogous reasoning shows that there is at most one branch of the SC in the lower half-plane, and 
u =b > Ototheleftofit. 

Since problem (l.l), (1.2), (4.1) possesses the following symmetry 

L j-L, a +-b, b +-a: V(x, y) + V(-x, -y), ea + -eb, eb d-e, (4.4) 

it follows that the semiparabolas forming the SC are situated in quadrants symmetric about the origin. 
It follows from the equation X? = y that the motion is clockwise. If e, < 1/(2u) (resp. eb > l/(B)), a 

trajectory starting on the upper (lower) part of the SC will never cross the SC again (Fig. 3a). If one 
of the coefficients e, is zero, it follows from the symmetry relations (4.4) that the other coefficient must 
also vanish, and one has motion along a closed trajectory. Consequently, l/(b) c e < 0,O c g s l/(B). 
If e = 1/(2u), the upper part of the SC is a trajectory of the system i = y, Jo = u with u = a. As follows 
from Eqs (2.1), the value of the expression q + Lx2 change_s sign at each point of this trajectory; 
hence, on the trajectory itself, it must be true that q + LX - 0, and this must hold identically with 
respect to time as the system moves along the trajectory. Thus, motion along the parabolax = y2(2a) 
satisfies the Maximum Principle only when that parabola is a singular arc. Consequently, in basic control 
e, > l/@). Analogous reasoning shows that eb c l/(B). 

If the SC lies in the first and third quadrants, the corresponding trajectory recedes from zero 
(Fig. 3b). Thus, the semiparabolas forming the SC are situated in the second and fourth quadrants. We 
have thus proved propositions 1 and 3. 

Let C,(e,y:, yi), C2(e&, y2), Cs(e,yi, ys), Cd(e,yi, y4) be consecutive switching points of the control. 
Then, by conditions (l.l), we have 

Y2 = yl + atl, ebyi = e,y: + y,f, + &I2 

y3 = y2 + bt,, e,y: = eby: + y2t2 + bt$2 
(4.5) 

where tl is the time needed to go from point C1 to point C2, and t2 is the time needed to go from point 
C2 to point C3. It follows from (4.5) that 

g= Y: 1 
l/2 

g,, -=-i g,= 
e, - 1/(2c) 

Y: Yj: gb [ I eb - 1/(2C) 

from which it follows that 

Y, +2bn = &z/g, < 1 

and the set of switching points is thus shown to be denumerable 
Using equalities (4.6), we obtain the relation 

f_z = aY3-Y2 al+ l/g, --=---=a 
t1 by, - ~1 bl+ l/g, 

(4.6) 

(4.7) 

Fig. 3 Fig. 4 



Optimal synthesis in a two-dimensional problem with asymmetric constraints on the control 181 

Similarly, we obtain 
t3 bl+& -=--- 
t 2 al +gb 

(4.8) 

It follows from (4.7) and (4.8) that 

t3 ‘gt2 -z---z 

t1 t2t1 
q<l, eoE (&o), ebe (&$) (4.9) 

Relation (4.9) is a special case of the general relation 

t n + *lt, = 4 < 1 

Thus, the time necessary to reach the origin is the sum of the geometric progression 

(4.10) 

T = t,(l +a)(1 +q+q2+ . ..) = t,(l +a)/(1 -q) 

We have thus proved Proposition 2. 

(4.11) 

When L E (-l/b, -1/(4b)) u (-l/(k), -l/u), the control has two switchings and a singular arc of first 
order. The nature of the optimal synthesis for L E (-1/(4u), -l/u) is shown in Fig. 4. 

The rigorous basis of these control laws is obtained via dynamic programming. The structure of 
Bellman’s function, which depends on two constants, was obtained in Section 3 (see (3.13)). It is still 
necessary to determine the constants& and the coefficients e, of the semiparabolas that make up the 
switching curve. This will constitute a complete solution of the problem. In the computation ofA, and 
e,, the parameters a, b and L are assumed to be given. Generally speaking, the volume of computations 
may be reduced by virtue of symmetry relations (4.4). 

The following system of four equations is considered in the interval L E (-l/(46), -1(4u)) 

V(x,y) = vb(x, y), c+ Ly2 = 0 (x = e,y2) (4.12) 

When x = eCy2 is substituted into Eqs (4.12) a common factor y4 or y5 appears, and its cancellation 
leads to the following equalities in terms of A,, e, and a, b, L 

Aal.&-ec15’2+q.(f+L)(e~-$c+--&) = 

= Ab~~-e,15’2+~c(~+L)(ej-&e,+--$) 

~c+4c~&-e~3’2sign(~-e)-(~+L)(e~-~ec+-$)+Le~ = 0 

(4.13) 

(4.14) 

where w, = -1, mb = 1 
These equalities form a system of transcendental equations is unknownsA, and e,, which have been 

solved numerically, using the MAPLE system, for specific values of a, b and L. 
For L 5 -l/(&z) and L s -1/(4b), Eq. (2.6) gives e, = -2L. Substituting this value into Eq. (4.14), 

we obtain the following value for the constant A, = A,* 

(4.15) 

If L 3 -1/(4c), the function& (x, y), equal to V&y) as in (3.13) with the constant (4.15), defines 
Bellman’s function in the part of the domain N” between the semiparabolasx = -2Ly2 andx = y2/(2u). 
In the other part of N”, the function v”(x, y) is defined with a constant A, which, together with Ab and 
eb, must be sought using a system of three equations, including (4.13) with c= b, (4.14) with c = b, and 
the modification of Eq. (4.13) with c = a, in which we substitute A,= Al and e, = -2L. Note that if 
L = -l/(h), then e = l&&z), and to find A,, Ab and eb we use the system consisting of (4.13) with 
c = a, (4.13) with c = b, and (4.14) with c = b. There is no longer any need for the constant AZ, since 
the curve x = -2Ly2 coincides with the curve x = y2/(%). Relation (4.14) with c = a then becomes an 
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Fig. 5 

identity. While A,* + M as L + -1/(4u,) + 0, the quantity c (x, y) tends to a finite limit forx = y2/(2u): 

v,* = -3y5/( 80a3) 

The results of the computations for a = -l/2, b = 1, are as follows: 

L -1.0 -0.5 -0.2 0 0.2 0.5 1.0 2.0 
A 1 s3960 1.31993 1.17206 1 a6959 0.96668 0.81200 0.55378 0.03657 
A* - 0.53333 1.23168 
B 0.17893 0.48594 0.66907 0.79046 0.91098 1.08866 I .34924 1.75991 
B* 0.87093 0.37712 - - 

e, -0.82684 -0.84953 -0.86990 -0.88897 -0.91610 -1.OOOOO -2.OOOOO -4.OOOOO 
eb 2.OOOOO 1.OOOOO 0.48047 0.445 10 0.42799 0.4 1342 0.40000 0.38632 

and are illustrated in Fig. 5. 

5. CONSTRAINS OF THE SAME SIGN 

Let us now consider the problem of minimizing the family of functionals (1.2) for motions of system 
(1.1) in the case when the range of admissible values of the control parameter does not contain the origin 

ab>O; a>O: L2-l/b; b<O: LI-l/a (5.1) 

In that case the controllability domain (the domain of initial values from which admissible controls 
will steer the system to the terminal set) is not the whole (x, y) plane: starting from a point (x0, y’), the 
system may be brought to the origin only provided that 

yo21( 2 b) I x0 I yo2/( 2a); a>O: y”<O; b<O: y2>0 (5.2) 

The controllability domain for the case a > 0 is bounded by the upper semiparabola (x = y2/(2a)) 
and the lower semiparabola (x = y2/(%)) (the dashed curves in Fig. 6). 

Everywhere henceforth we shall assume that the constraints imposed on the control have positive 
signs. Consideration of the case in which the range of admissible control values lies entirely on the 
negative semi-axis is analogous. If the system is outside the limits of the controllability domain, no 
admissible control will steer it to the origin. Note that when the system is on the boundary of the 
controllability domain, say the upper (lower) semiparabola, the only control that does not take it outside 
the limits of the controllability domain is motion along the semiparabola in question with control 
u = a (resp. u = b). This control law will steer the system to the origin. All other types of control will 
take it out of the controllability regime. 

By what was stated in Section 2, we have the following control values satisfying the Maximum Principle 

(5.3) 

fE (t*,t2) 
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Fig. 6. 

The last value corresponds to motion along the singular arc (2.6). By virtue of the constraints on the 
control, the corresponding control will be possible only if 

-1/(4a) I L I -1/(4b) (5.4) 

Constraints (5.4) have a simple geometrical interpretation: as soon as the relation between the 
parameters of the problem becomes such that the semiparabola x = -2Ly2, y < 0, is inside the 
controllability domain, one has a control with a first-order singular arc. 

Note that, besides the singular arc, there is no SC inside the controllability domain. Indeed, suppose 
the contrary: suppose that there is a SC in the interior of the controllability domain at which the control 
changes value from u = 1 (u = 6) to u = b (u = a). This SC must separate two domains with positive 
and negative values of 4 + Ly2. Suppose in the domain where 4 + Ly2 > 0 a motion with control 
u = a has begun (see formula (5.3)). On reaching the SC and changing the control value to u = b, the 
system continues to move in the same domain in which it began (see Fig. 6a, where the SC is the dash-dot 
curve). Hence the value of the control should not change. This contradiction proves that the only possible 
SC is the singular arc (where the control changes value from u = a or u = b to u = -1/(4L)). 

Thus, for L E (-l/b, -1/(4b)) u (-1/(4u), -) two control laws using the extreme values of the control 
turn out to be possible (see Fig. 6b): motion with control u = a (u = b) up to the lower (upper) 
boundary of the controllability domain x = y2/(%) (X = y2/(2u)), and then motion along the boundary 
with control u = b (u = a). 

The question as to the optimality of these regimes is solved using Bellman’s function. At any point 
A@, y) on the boundary of the controllability domain, the value of Bellman’s function may be found 
by direct integration of functional (1.2) along the relevant part of the boundary (since any encounter 
with the boundary im lies going outside the controllability domain). Having integrated (1.2) along the 
semiparabolas x = P /(2u), y < 0 and x = y2/(2b), y < 0, we obtain the following values of Bellman’s 
function on the lower boundary (superscript minus) and upper boundary (superscript plus) 

v-(y) = v 
( > 

&Y2,Y = -z---- l ““,: ly5, V'(y) = v(&y*,y) = +qy' (5.5) 
a 

Using the first (second) of these relations, we can determine the value of the constant A, (At,) in 
expression (3.13). We have 

1 &(~a + 1)(8b2 - 12ab) + 3a2h 
Aa=-E 

(b-a)AG) 

1 &Lb + 1)(8a2- 12ab) + 3b2$2 
Ab = jj 

(b-&s) 

(5.6) 

The signs of the expressions 

w = vy + Lx2 (5.7) 

were used to establish the character of the synthesis. On parabolas of the form x = ly2, y < 0, formulae 
(5.7) may be expressed as functions of the variables y and r 

w = a,(r)y4 (5.8) 
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Thus, to investigate the signs of formulae (5.7), it will suffice to investigate the signs of the functions 
Mr), r E (l/(a), 14%)). 

It has been shown that for L c -1/(4a) (L > -1/(4b)) the domains of values of aC(r) lie entirely on 
the negative (positive) real semi-axis. Hence it follows that the values of formula (5.7) are negative 
(positive) at all interior points of the controllability domain, whence, in view of (5.3), we deduce that 
for L < -1/(4a) (L > -1/(4b)) an optimal control law consists of the following elements: start at any 
point ,4(x, y) of the controllability domain, necessarily with control u = b (U = u) and, after reaching 
the upper (lower) boundary of the controllability domain, move along it to the origin, using the control 
u = a (U = 6). This regime is represented by the upper (lower) trajectory in Fig. 6b. 

In the range of L values (5.4), the domains of values of the function a,(t) include zero and, besides 
the ranges of r values where they have the same signs, intervals exist at whose points the function a,(r) 
have different signs. This dictates the assumption that, when condition (5.4) holds, the optimal control 
must include an interval of motion along the singular arc (2.6) ( see Fig. 6~). The values of the constants 
A, in formula (3.13) are determined from the values of Bellman’s function on the singular arc. The 
values of Bellman’s function at points of the singular arc are determined by direct integration of 
functional (1.2) along the singular arc (2.6) 

V"(y) = V(-2Ly2, y) = yLgy5 

Along the singular arc it must be true that 

v’(-2Ly2,y) = yL’y5 

It follows from (3.13) and (5.10) that 

‘4, = -5 2 (3Lc+ 1) 
d 15 HJi-Tq 

(5.11) 

It has been shown that the following relations hold in the domain above the singular arc (see 
Fig. 6c) 

v;+Lx*<o, x>-2Ly2; $+Lx2 = 0, x = -2Ly2 

while in the domain beneath the singular arc 

vf: + Lx2 > 0, x < - 2Ly2; vf: + Lx2 = 0, x = -2Ly2 

Relations (5.3), (5.12) and (5.13) imply that the synthesis illustrated in Fig. 6 is optimal 
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